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Abstract
We show that the two-dimensional Calogero–Marchioro model (CMM) without
the harmonic confinement can naturally be embedded into an extended
SU(1, 1|2) superconformal Hamiltonian. We study the quantum evolution
of the superconformal Hamiltonian in terms of suitable compact operators of
the N = 2 extended de Sitter superalgebra with central charge and discuss
the pattern of supersymmetry breaking. We also study the arbitrary D-
dimensional CMM having dynamical OSp(2|2) supersymmetry and point out
the relevance of this model in the context of the low energy effective action of
the dimensionally reduced Yang–Mills theory.

PACS numbers: 1130, 0365, 0530, 1110, 1115, 1125, 6460

1. Introduction

The Calogero–Moser–Sutherland (CMS) system is a class of exactly solvable models in
one dimension [1–5]. These models have been studied extensively from the time of their
inception more than 30 years ago and are well understood. There are many higher-dimensional
generalizations of these models [6–13]. Unfortunately, not a single one of these models are
known to be exactly solvable or integrable. Among all these systems, the two-dimensional
Calogero–Marchioro model (CMM) deserves special attention for several reasons. First of
all, for a certain value of the coupling constant, different n-point correlation functions can be
calculated analytically by mapping this model to a complex random matrix theory [7, 13, 14].
This model also has been studied extensively [13,15,16] in connection with several condensed
matter systems such as the quantum Hall effect, quantum dots, two-dimensional Bose systems
etc, revealing many interesting features.

The purpose of this paper is to unveil one more new feature of this model. We
first study the D-dimensional N -particle super-CMM with ND bosonic and ND fermionic
degrees of freedom. We show how infinitely many exact eigenstates can be constructed,
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both in supersymmetry-breaking and supersymmetry-preserving phases, using the dynamical
OSp(2|2) symmetry of the model. We then show that, within the specific formalism, only
the two-dimensional CMM without the harmonic confinement can naturally be embedded into
an extended superconformal Hamiltonian. In other words, we construct an extended N = 2
superconformal version of the two-dimensional CMM. This construction is valid for arbitrary
values of the coupling constant and also for arbitrary N number of particles. We study the
quantum evolution in terms of suitable compact operators of the extended N = 2 de Sitter
superalgebra. Though we are able to find an infinite number of exact eigenstates of these super-
operators, the set is not complete and we are unable to find the complete spectrum. We also
discuss the supersymmetry-breaking pattern of the extended N = 2 de Sitter supersymmetry
with central charge and show how the half or the complete breakdown of supersymmetry
occurs. Finally, we point out the relevance of our findings in the context of super-Yang–Mills
(YM) theory.

We organize the paper in the following way. We first introduce the conformal CMM
model in arbitrary dimensions in the next section. An infinite number of excited eigenstates
corresponding to the radial excitations are constructed algebraically using the underlying
SU(1, 1) symmetry. We construct the superconformal CMM in arbitrary dimensions in
section 3. We also obtain infinitely many exact eigenstates using the dynamical OSp(2|2)
symmetry of the model. The extended N = 2 superconformal CMM in D = 2 is constructed
in section 4. The symmetry algebra of the model and the supersymmetry-breaking pattern is
discussed. Finally, in section 5, we summarize our findings and discuss the relevance of our
results. We point out a possible relation between the D-dimensional CMM considered in this
paper and the low-energy effective action of theD + 1-dimensional YM theory dimensionally
reduced to 0 + 1 dimension.

2. Conformal CMM

We first consider the three operators h, D and K given by

h = 1

2

∑
i,µ

p2
i,µ +

g

2
(g +D − 2)

∑
i �=j

�r−2
ij +

g2

2

∑
i �=j �=k

(�rij · �rik)�r−2
ij �r−2

ik

D = − 1
4

∑
i,µ

{xi,µ, pi,µ} K = 1
2

∑
i,µ

x2
i,µ pi,µ = −i

∂

∂xi,µ
�rij = �ri − �rj

(1)

where �ri is theD-dimensional position vector of the ith particle with xi,µ the components and
g the coupling constant. We fix the convention that the Roman indices run from 1 to N , while
the Greek indices run from 1 to D. These three operators admit the O(2, 1) algebra,

[h,D] = ih [h,K] = 2iD [K,D] = −iK. (2)

For the general conformal Hamiltonian, the many-body interaction of h (the last two terms)
should be replaced by a degree −2 homogeneous function of the coordinates. The Hamiltonian
h describes the CMM without the harmonic confinement. However, the ground state of hwith
the ground-state energyE = 0 is not even plane-wave normalizable. Following the prescription
suggested by de Alfaro et al [17] for such a quantum mechanical model with conformal
symmetry, the quantum evolution can be described by an appropriate compact operator. This
compact operator can be constructed from the linear combination of the Hamiltonian h, the
dilatation generator D and the conformal generatorK . Following [17], we choose this compact
operator H as H = h + K . The introduction of K breaks the scale invariance. The operator
H is the D-dimensional CMM.
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In one dimension, H is exactly solvable and known as the rational CMS Hamiltonian. In
D � 2, though infinitely many exact eigenstates of this Hamiltonian can be found, the complete
eigenspectrum is still not known. The ground-state wavefunction is determined as [6, 7]

ψ0 =
∏
i<j

|�ri − �rj |ge− 1
2

∑
i �r2
i (3)

with the ground-state energy E0 = ND
2 + gN(N − 1)/2. Using the underlying SU(1, 1)

symmetry,

B±
2 = − 1

2 (h−K ∓ 2iD) [H,B±
2 ] = ±2B±

2 [B−
2 , B

+
2 ] = H (4)

one can construct infinitely many exact eigenstates of this Hamiltonian. In particular,

ψn = (B+
2 )
nψ0 (5)

are exact eigenstates ofH withEn = E0+2n. ForD = 3, these exact eigenstates corresponding
to the radial excitations were first obtained in [6] by directly solving the Schrödinger equation.
Following the same method, these eigenstates were constructed for arbitraryD in [7]. However,
we provide here an algebraic construction of these radial excitations in equation (5), using the
underlying SU(1, 1) symmetry. Unfortunately, the complete spectrum ofH is still not known.
The incompleteness of the spectrum can be understood in the following way. In the limit
g → 0, the Hamiltonian H reduces to that of a system of N free harmonic oscillators in D
dimensions. Thus, in this limit, the complete spectrum of a system of N free oscillators in D
dimensions should be reproduced. This is not the case, as can be seen from the expressions
ψn and En given above.

3. N = 1 superconformal CMM: OSp(2|2)

We now construct the supersymmetric version of h andH . The supercharge q and its conjugate
q† are defined as

q =
∑
i,µ

ψ
†
i,µ ai,µ q† =

∑
i,µ

ψi,µ a
†
i,µ (6)

where the ND fermionic variables ψi,µ satisfy the Clifford algebra

{ψi,µ, ψj,ν} = 0 = {ψ†
i,µ, ψ

†
j,ν} {ψi,µ, ψ†

j,ν} = δij δµ,ν . (7)

The ai(a
†
i ) operators are analogous to bosonic annihilation (creation) operators.

They are defined in terms of the momentum operators pi,µ and the superpotential
W(x1,1, x1,2, . . . , x1,D, x2,1, . . . , xN,D−1, xN,D) as

ai,µ = pi,µ − iWiµ a
†
i,µ = pi,µ + iWi,µ Wi,µ = ∂W

∂xi,µ
. (8)

For the general superconformal quantum mechanics, the superpotential should have the
following form:

W = − lnG
∑
i,µ

xi,µ
∂G

∂xi,µ
= dG (9)

where d is any arbitrary constant. We choose the superpotentialW as

G =
∏
i<j

|�rij |g (10)
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which results in the following Hamiltonian:

hs = 1
2 {q, q†}

= h + g
∑
i �=j ;µ

(2(xi,µ − xj,µ)2�r−2
ij − 1)�r−2

ij (ψ
†
i,µψi,µ − ψ†

i,µψj,µ)

+ 2g
∑

i �=j ;µ �=ν
(xi,µ − xj,µ)(xi,ν − xj,ν)�r−4

ij (ψ
†
i,µψi,ν − ψ†

i,µψj,ν). (11)

The super-Hamiltonian hs is the supersymmetric generalization of h. This can be checked by
projecting hs in the zero-fermion sector (ψi,µ|0〉 = 0) of the 2DN -dimensional fermionic Fock
space.

The super-Hamiltonian hs does not have a normalizable ground state. Following the
standard procedure in the literature [17–19], the quantum evolution can be described by the
operators R or Hs defined as

Hs = R + B − c R = hs +K

B = 1
2

∑
i,µ

[ψ†
i,µ, ψi,µ] c = g

2
N(N − 1). (12)

The new operatorHs is the supersymmetric generalization of theD-dimensional CMMH . The
complete eigenspectrum of this operator is known [20,21] forD = 1, both in supersymmetry-
preserving (g > 0) as well as supersymmetry-breaking (g < 0) phases. No attempt has been
made so far to study Hs with its full generality forD � 2. We find that the ground state of Hs

in the supersymmetric phase (g > 0) is determined as, ψ0
s = ψ0|0〉. A comment is in order

at this point. The ground-state wavefunction ψ0
s is normalizable for g > − 1

2 . However, a
stronger criterion that each momentum operator pi,µ is self-adjoint for the wavefunctions of
the form ψ0

s requires g > 0. The supersymmetry is preserved for g > 0, while it is broken for
g < 0 [18, 21]. Let us now define the following operators:

Q1 = q − iS Q2 = q† − iS† S =
∑
i,µ

ψi,µ
†xi,µ

Q
†
1 = q† + iS† Q

†
2 = q + iS S† =

∑
i,µ

ψi,µxi,µ.
(13)

Note that the super-Hamiltonian Hs = 1
2 {Q1,Q

†
1}. One can define bosonic and fermionic

creation operators [18, 21]

B†
2 = − 1

4 {Q†
1,Q

†
2} F†

2 = Q†
2. (14)

It can be checked easily that

[Hs,B†
2] = 2B†

2 [Hs,F†
2 ] = 2F†

2 . (15)

We construct a set of exact eigenstates with the help of these operators. In particular,

ψn,ν = B†n

2 F†ν

2 ψ
0
s (16)

are the exact eigenstates ofHs with the energyEn,ν = 2(n+ ν). The bosonic quantum number
n can take any non-negative integer values, while the fermionic quantum number ν = 0, 1.
The super-Hamiltonian Hs reduces to that of N free super-oscillators in D dimensions in the
limit g → 0. In the same limit, one would thus expect to obtain the complete eigenspectrum
of N free super-oscillators inD dimensions from ψn,ν and En,ν . Unfortunately, En,ν and ψn,ν
describe only a small part of the complete spectrum of the free super-oscillator Hamiltonian.
Thus, the set of exact eigenstates (16) is not complete and we are unable to find the complete
spectrum.
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The supersymmetry-breaking phase of Hs is characterized by g < 0. A set of exact
eigenstates in this phase can also be constructed by using a duality property of this Hamiltonian.
Consider a dual-Hamiltonian H̃s constructed in terms ofQ2 andQ†

2 as H̃s = 1
2 {Q2,Q

†
2}. This

Hamiltonian can also be obtained from Hs by making g → −g and ψi,µ ↔ ψ
†
i,µ [21]. We

determine the ground-state of H̃s in its own supersymmetric phase (g < 0) as

ψ̃0 =
∏
i<j

|�ri − �rj |−ge− 1
2

∑
i �r2
i |ND〉 ψ

†
i,µ|ND〉 = 0. (17)

Note that H̃s is related to Hs by the following relation:

Hs = H̃s + B − 2c. (18)

Thus, ψ̃0 is also an exact eigenstate of Hs with the ground-state energy E0 = B − 2c, which
is positive definite for g < 0. This is in fact the ground-state wavefunction of Hs in the
supersymmetry-breaking phase. A comment is in order at this point. Usually, there are no
general methods to find eigenstates in supersymmetry-breaking phase of a model. However,
the duality symmetry of Hs plays an important role in understanding the supersymmetry-
breaking phase of the model. Firstly, the wavefunction ψ̃0 is guaranteed to be the ground state
of Hs for g < 0, because of the relation (18) and the fact that ψ̃0 is the ground state of the
dual-Hamiltonian H̃s in its own supersymmetry-preserving phase g < 0. Further, an algebraic
construction of excited states of Hs for g < 0 is possible using the duality symmetry. In
particular, a set of excited states can be obtained by applying different powers of the bosonic
creation operator B̃†

2 and the fermionic creation operator F̃†
2 on ψ̃0, where these operators are

obtained from (14) by making g → −g and ψi,µ ↔ ψ
†
i,µ. In particular, the eigenstates and

the corresponding eigenvalues are

ψ̃n,ν = B̃†n

2 F̃†n

2 ψ̃0 Ẽn,ν = E0 + 2(n + ν). (19)

This set of exact eigenstates is, again, not complete.

4. N = 2 superconformal CMM: SU (1, 1|2)

After the centre-of-mass separation, the super-Hamiltonian hs for D = 2 and N = 2 reduces
to the model considered in [18]. This model has been shown to have extended SU(1, 1|2)
superconformal symmetry [18]. We generalize the work of [18] for an arbitrary two-
dimensional N particle systems and find the criterion for having SU(1, 1|2) superconformal
symmetry in the following. The superpotential (9) with the further constraint

G = f (z1, z2, . . . , zN) g(z
∗
1, z

∗
2, . . . , z

∗
N) zk = xk,1 + ixk,2 z∗k = xk,1 − ixk,2 (20)

always gives rise to N = 2 superconformal Hamiltonian. The homogeneity condition on G
implies that the (anti-)holomorphic function (g)f should also be homogeneous. Note that
except for the two-dimensional CMM and a nearest-neighbour variant of this model [11],
none of the other two-dimensional models [8–10] satisfies the above criterion. Thus, the two-
dimensional CMM enjoys a special status over all other models. We specialize to D = 2 and
CMM in the remainder of the discussion.

Let us define an operator Y and its conjugate Y † as

Y = 1
2

∑
i

εµνψi,µψi,ν Y † = − 1
2

∑
i

εµνψ
†
i,µψ

†
i,ν (21)

where εµν is the two-dimensional Levi-Civita pseudo-tensor. We follow the convention that
the repeated indices of the Levi-Civita pseudo-tensor are always summed over. The operators
Y , Y † and B constitute a SU(2) algebra,

[Y, Y †] = −B [B, Y ] = −2Y [B, Y †] = 2Y †. (22)
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Further, we have the following commutation relations:

[Y †, ψi,µ] = εµνψ†
i,ν = ψ̄i,µ [Y,ψ†

i,µ] = −εµνψi,ν = −ψ̄†
i,µ. (23)

Following [18], it can be shown that the unitary transformation U , which represents a 180◦

rotation around the second axis in the internal space, performs the following transformation:

U−1ψi,µU = ψ̄i,µ U−1ψ
†
i,µU = ψ̄†

i,µ. (24)

The SU(2) generators Y , Y † and B commute with the Hamiltonian hs. The Hamiltonian hs

has the internal SU(2) symmetry and is invariant under the unitary transformation U .
The extended N = 2 supersymmetry can be constructed by combining together the SU(2)

generators, the operatorsQ1,Q2, S and their conjugates and a set of new operator Ā = U−1AU

corresponding to each odd operator A. Define the new supercharges q̄ and q̄† following this
prescription as [18]

q̄ =
∑
i,µ

ψ̄
†
i,µai,µ =

∑
i

εµ,νψi,νai,µ q̄† =
∑
i,µ

ψ̄i,µa
†
i,µ =

∑
i

εµ,νψ
†
i,νa

†
i,µ. (25)

These supercharges satisfy the following anticommutation relations [18]:
1
2 {q, q†} = hs

1
2 {q̄, q̄†} = hs. (26)

All other anticommutators among themselves vanish. The super-Hamiltonian will now have a
quartet structure. However, as noted earlier, hs does not have a normalizable ground state. The
quantum evolution can be described byR = hs +K orHs. We now explore the full SU(1, 1|2)
symmetry. Define [18]

Q̄1 = q̄ − iS̄ Q̄2 = q̄† − iS̄† S̄ =
∑
i,µ

ψ̄
†
i,µxi,µ =

∑
i

εµνψi,νxi,µ

Q̄
†
1 = q̄† + iS̄† Q̄

†
2 = q̄ + iS̄ S̄† =

∑
i,µ

ψ̄i,µxi,µ =
∑
i

εµνψ
†
i,νxi,µ.

(27)

The operatorsQ1, Q̄2 and their conjugates have the following anticommutator algebra:
1
2 {Q1,Q

†
1} = R + B − c = Hs

1
2 {Q̄2, Q̄

†
2} = R + B + c = Hs + 2c

1
2 {Q1, Q̄

†
2} = − 1

2 {Q†
1, Q̄2} = −iJ

(28)

where the angular momentum operator is defined as [18]

J =
∑
i

εµν(xi,νpi,µ + iψ†
i,µψi,ν). (29)

Similarly, the only non-vanishing anticommutators among Q̄1,Q2 and their conjugates are
1
2 {Q2,Q

†
2} = R − B + c = H̃s

1
2 {Q̄1, Q̄

†
1} = R − B − c = H̃s − 2c

1
2 {Q2, Q̄

†
1} = − 1

2 {Q†
2, Q̄1} = −iJ.

(30)

All other non-vanishing anticommutators are given by

− 1
2 {Q1, Q̄

†
1} = 1

2 {Q̄2,Q
†
2} = 2Y † − 1

2 {Q̄1,Q
†
1} = 1

2 {Q2, Q̄
†
2} = 2Y

1
4 {Q1,Q2} = 1

4 {Q̄1, Q̄2} = −B2
1
4 {Q†

1,Q
†
2} = 1

4 {Q̄†
1, Q̄

†
2} = −B†

2.
(31)

The evolution can be described either by Hs or H̃s.
The supercharges Q1 and Q̄2 are the generators of an extended N = 2 de Sitter

supersymmetry with the central charge c. It is amusing to note that the central charge c is
precisely the energy of the classical minimum equilibrium configurations of the bosonic part
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of Hs. However, we do not find any topological origin of c, as in the case of field theories
admitting soliton solutions in the Bogomol’nyi–Prasad–Sommerfeld limit. As mentioned
earlier, ψ0

s is the ground state of Hs in the supersymmetric phase. This essentially implies
that the supersymmetry associated with the generator Q̄2 has broken. Thus, this is the case
corresponding to the spontaneous breakdown of supersymmetry from N = 2 → N = 1. For
g < 0, the supersymmetry spontaneously breaks down completely. The eigenspectrum of Hs

in this supersymmetry-breaking phase can be constructed from H̃s.
The anticommutator algebra (28) is not in diagonal form because of the last equation. The

eigenstates of Hs correspond to the angular momentum eigenvalue j = 0. Following [18]
exactly, let us define

µ = cos θQ1 + i sin θQ̄2 ν = i sin θQ1 + cos θQ̄2 tan(2θ) = j/c. (32)

It can be checked easily that

1
2 {µ,µ†} = R + B −

√
c2 + j 2 1

2 {ν, ν†} = R + B +
√
c2 + j 2 {µ, ν†} = 0. (33)

The condition that the supersymmetric ground state is annihilated by both µ and µ† gives

ψs0(j) =
∏
i<j

(zi − zj )g−
(z∗i − z∗j )g

+
e− 1

2

∑
i zi z

∗
i |0〉

g∓ = 1

N(N − 1)
[(j 2 + c2)

1
2 ∓ j ].

(34)

Note that for j = 0, g+ = g− = g

2 andψs0(j = 0) reduces toψs0 . The eigenstates in (34) carry
an angular momentum,

j = 1
2 (g+ − g−)N(N − 1). (35)

Note that j receives contribution only from the bosonic part of ψs0(j). The rest of the analysis
can be carried out in a straightforward way. In particular, one can easily verify that

Hs(j) = 1
2 {µ,µ†} [Hs(j),B†

2] = 2B†
2 [Hs(j),F†

2 ] = 2F†
2 . (36)

Thus, we construct the excited states as

ψn,ν(j) = B†
2
nF†

2
νψs0(j) (37)

where the bosonic quantum number n can take any non-negative integer values, while the
fermionic quantum number ν = 0, 1. Note that all these eigenstates have the same angular
momentum.

5. Summary and discussion

We have constructed and studied theD-dimensional superconformal CMM having dynamical
OSp(2|2) symmetry. Though we have obtained an infinite number of exact states
corresponding to the bosonic and the fermionic excitations, the complete spectrum is still not
known. Further, we have shown that the two-dimensional CMM can naturally be embedded
into an extended SU(1, 1|2) superconformal Hamiltonian. This construction of extended
N = 2 superconformal many-particle Hamiltonian is valid for arbitrary number of particles
and also for arbitrary values of the coupling constant. This is the central result of our paper.
We have also studied the evolution of this system in terms of operators of the extended N = 2
de Sitter supersymmetry and discussed the supersymmetry-breaking pattern.

It may be worth mentioning here that an attempt to construct one-dimensional CMS
Hamiltonian with extended superconformal symmetry has been made recently [22]. It is
found that within the specific formalism, the SU(1, 1|2) superconformal CMS model in one
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dimension can be constructed only for a certain value of the coupling constant. Further,
though a general formulation of the multidimensional supersymmetric quantum mechanics
with N = 2 was given in [23], no nontrivial many-particle systems of CMS type have yet been
shown to result from such formulation. To the best of our knowledge, we are not aware of any
other work discussing the SU(1, 1|2) superconformal Hamiltonian of CMM type with its full
generality. Within this background, the extended N = 2 superconformal CMM presented in
this paper appears to be the first such example in the literature. The space-time dimensionality
plays an obvious role in our analysis. However, we would like to stress again that only the
CMM and a nearest-neighbour variant of this model [11], among several other interesting
many-particle two-dimensional models [8–10], are amenable for such a construction.

The history of studying the supersymmetric quantum mechanical model with higher
number of supercharges [24] is long. One of the major reasons for the renewed interest
in the (super-)conformal quantum mechanics is its relevance in the study of adS/CFT
correspondence and black holes [25]. Though a direct connection between the CMM and
the black hole physics cannot be established at this point, we observe a possible relation
between the D-dimensional CMM and the low-energy effective action of D + 1-dimensional
YM theory dimensionally reduced to 0+1 dimension. This observation is based on the existing
results on this subject in the literature [12, 13].

It is known [7,13,14] that the Hamiltonian h forD = 2 and g = 1
2 describes the dynamics

of a Gaussian ensemble ofN ×N normal matrices in the limitN → ∞. The Gaussian action
of the normal matrices is given by

A(M,M†) = 1

4

∫
dt Tr

(
∂M†

∂t

∂M

∂t

)
[M,M†] = 0. (38)

The second equation definesM to be normal matrices. The action A withM as normal matrices
is the low-energy effective action of 2 + 1-dimensional YM theory dimensionally reduced to
0 + 1 dimension with the choice of gauge A0 = 0 [12]. A term of the form [M,M†]2 drops
out in the low-energy limit giving rise to the constraint on M to be normal matrices. Thus,
for the first time in the literature, we observe the relation between the two-dimensional CMM
with g = 1

2 and the low-energy effective action of 2+1-dimensional YM theory dimensionally
reduced to 0 + 1 dimension. It is desirable to extend this result for arbitrary value of g, much
akin to the one-dimensional CMS system.

It is worth recalling that an attempt to construct higher-dimensional generalizations of
the one-dimensional CMS system from many-matrix models has been made in [12]. At the
classical level, the resulting Hamiltonian contains only a two-body interaction term of the
form

∑
i �=j �r−2

ij . No trace of a three-body term as in h has been found. However, for D = 2,
the many-matrix model considered in [12] is identical to A with M as normal matrix which
reduces to CMM with g = 1

2 in the quantum mechanical treatment [13]. Thus, it is expected
that the highly constrained classical models considered in [12] should give rise to the CMM
upon quantization for D = 2. We also expect that this will provide us a connection between
the low-energy effective action of 2+1-dimensional YM theory dimensionally reduced to 0+1
dimension and the two-dimensional CMM for arbitrary value of g. Based on this observation,
we believe that theD-dimensional super-CMM considered in this paper is in fact related to the
low-energy effective action of theD + 1-dimensional super-YM theory dimensionally reduced
to 0 + 1 dimension. Since the dimensionally reduced super-YM theory appears in many areas
of recent research activity like M-theory, D0-branes etc [26], it is of immense interest to put
our belief relating CMM and super-YM on a firm footing.
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